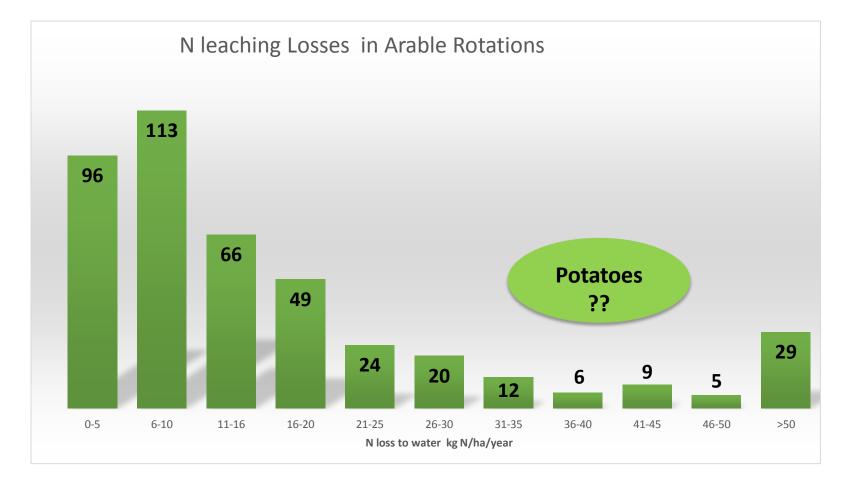
PNZ Agronomist's Forum


Overseer[™] and Other Models

- Overseer and Potatoes
- The Overseer Validation Project
- The Fluxmeter Project

Nitrogen Losses from Arable Rotations

Overseer benchmarking results from 430 arable rotations

S-map Soil Information for Pukekohe

Topsoil P retention

Patumahoe or Pukekohe (Patumahoe_3a.1)

This information sheet describes the typical average properties of the specified soil to a depth of 1 metre, and should not be the primary source of data when making land use decisions on individual farms and paddocks.

Key physical properties		Smap ref: Patum_3a					
Depth class (diggability)		Deep (> 1 m)					
Texture profile		Loam Over Clay					
Potential rooting depth		Unlimited					
Rooting barrier		No significant barrier within 1 m Stoneless					
Topsoil stoniness							
Topsoil clay range		22 - 28 %					
Drainage class		Moderately well drained Slightly limited Moderate Over Slow 80 - 85 (cm) Slow (< 4 mm/h)					
Aeration in root zone							
Permeability profile							
Depth to slowly permeable	horizon						
Permeability of slowest ho	rizon						
Profile available water	(0 - 100cm or root barrier)	Very high (212.5 mm)					
	(0 - 60cm or root barrier)	Very high (138.0 mm)					
	(0 - 30cm or root barrier)	Moderate (69.0 mm)					
Dry bulk density, topsoil		1.09 (g/cm3)					
Dry bulk density, subsoil		1.53 (g/cm3)					
Depth to hard rock		No hard rock within 1 m					
Depth to soft rock		No soft rock within 1 m					
Depth to stony layer class		No significant stony layer within 1 m					

Soil facts

N

Medium (46%)

Soil Information for Overseer

Patumahoe or Pukekohe (Patumahoe_3a.1)

Soil information for Ove	erseer TM		Smap ref: Patum_3a.1
		seer Nutrient Budget model v6.1. This in matched to the most appropriate Overs	formation is
Soil description page			
Click the 'Select soil by	y order' option. From t	the 'Order' dropdown box select:	Granular
Soil profile page			
Top soil (0 - 10 cm)			
Top soil texture:	Clay loam		
Is stony:	False		
Is compacted (this de	pends on manageme	nt so cannot be obtained from S-map)	
Lower profile			
Maximum rooting dep	oth:	Leave as 0	
Depth to impeded dra	ainage layer:	Leave as 0	
Soil texture group:		Medium	
Non-standard layer (o	depth in brackets):	leave blank	

Profile drainage class (in natural state):

A Pukekohe Winter Potato Rotation

Crop	Planted	KgN/ha	Fertiliser timing	Harvest	Yield T/ha
Mustard	Feb	0	Мау		
Onion	June	50 50 40	Evenly spaced	Dec/Jan	45T
Oats	February			April	
Potatoes	Мау	200 75 75	Planting Side dressing at 6 week intervals	October	35T

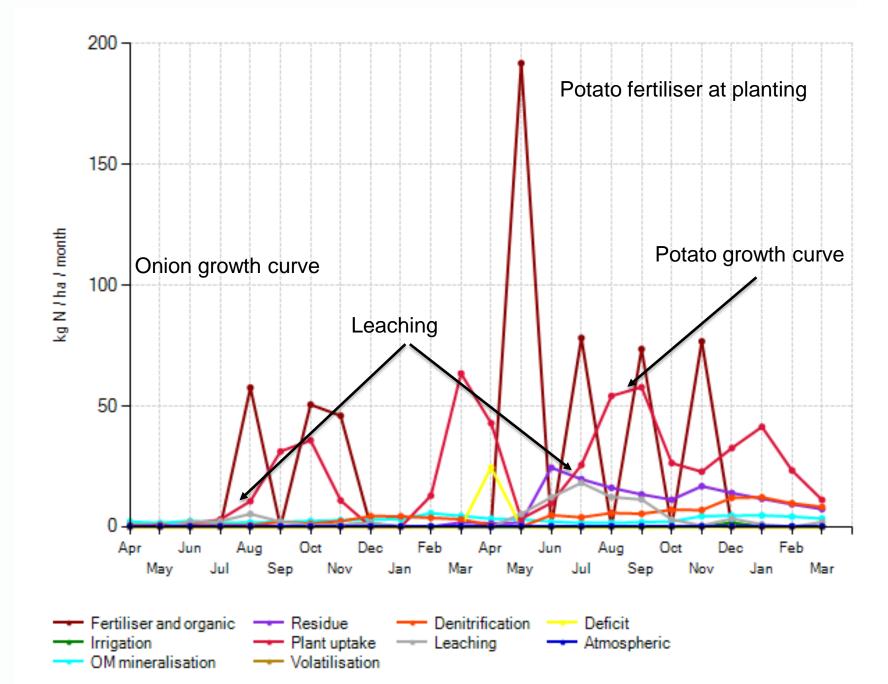
Crop rotation

Your crop rotation begins with the prior land use you specified on the crop history page.

Use the table below to enter activities that describe management of the crop during the year of interest (Reporting) year and the previous year (Year 1).

Add Crop

The Overseer Nutrient Budget


(kg/ha/yr)	N	P	K	S	Ca	Mg	Na
Nutrients added							
Fertiliser, lime & other	421	140	0	168	0	0	0
Rain/clover N fixation	2	0	3	5	3	7	36
Irrigation	2	0	1	2	6	1	6
Nutrients removed							
As product	140	24	172	7	16	8	7
As supplements and crop	0	0	0	0	0	0	0
residues							
To atmosphere	77	0	0	0	0	0	0
To water	69 <	0.9	10	159	124	26	50
Change in block pools							
Standing plant material	118	22	182	13	67	22	6
Root and stover residuals	10	2	-17	2	-3	-1	-1
Organic pool	-125	-6	0	-6	0	0	0
Inorganic mineral	0	19	-25	0	-2	-1	-6
Inorganic plant available	136	78	-318	0	-194	-46	-14

Environmental Losses

1	o atmosphere	77
	Volatilisation - fertiliser	0
	Volatilisation - other	0
	Denitrification - background	76
	Volatilisation from urine	0
	Denitrification from urine	0
1	o water	69
	Leaching - urine patches	0
	Leaching - other	69
	Runoff	0
	Direct (animals, drains)	0
	Direct pond discharge	0
	Border dyke outwash	0
	Septic tank outflow	0
-		

onions/potatoes (Background only)

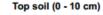
Soil Information for Canterbury Potatoes

Lismore stony silt loam (Lismore_23a.1)

Family: Lismoref

Smap ref: Lism_23a.1

Soil information for Overseer


The following information can be entered in Overseer Nutrient Budget model v6.1. This information is derived from the S-map soil properties which are matched to the most appropriate Overseer categories.

Soil description page

Click the 'Select soil by order' option. From the 'Order' dropdown box select: Brown

Soil profile page

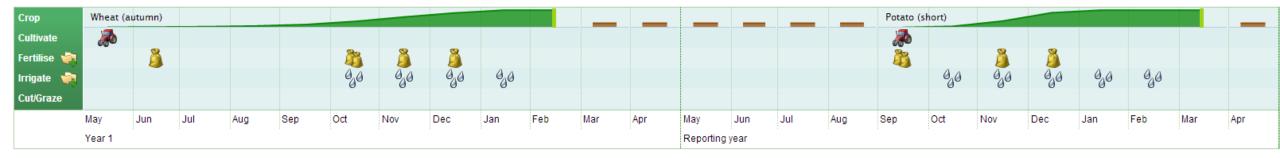
	\wedge	
<	FAR	>

- Top soil texture: Silt loam
- Is stony:

Is compacted (this depends on management so cannot be obtained from S-map)

Lower profile

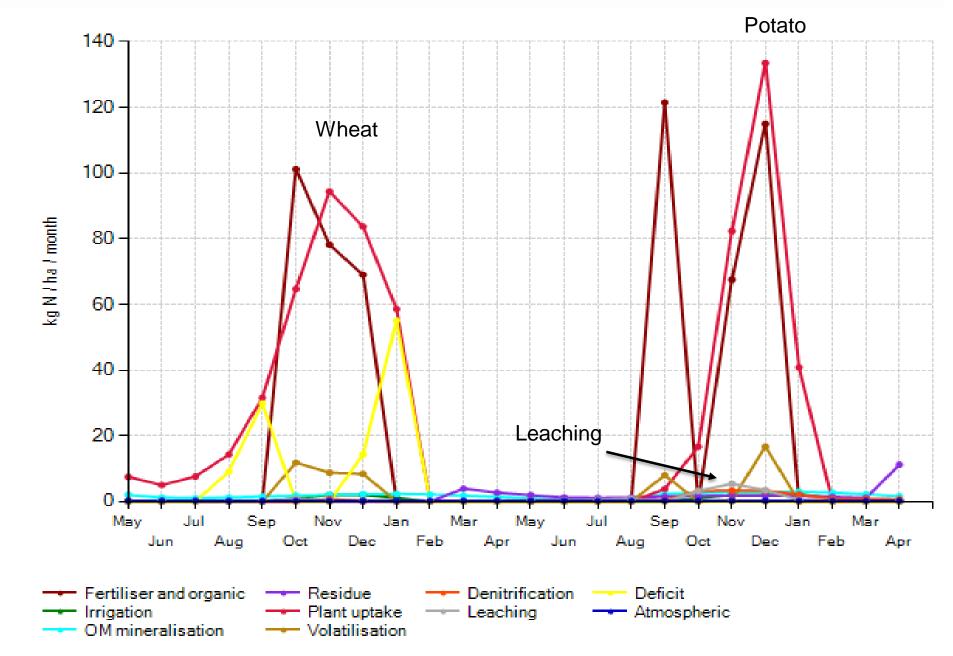
Maximum rooting depth:	Leave as 0
Depth to impeded drainage layer:	Leave as 0
Soil texture group:	Medium
Non-standard layer (depth in brackets):	Stony (41cm)


False

Drainage/runoff page

A Canterbury Potato Rotation

Crop	Plant Date	Timing		Harvest	Yield T/ha					
Wheat	Мау	ay 101 Plan 78 Nov 69 Dec		February	12T					
	Fallow									
Potato	September	122 (DAP) 68 (CAN) 115 (urea)	Planting November December	March	55T					



Overseer Nutrient Budget

Nutrient budget									
(kg/ha/yr)	Ν	Р	К	S	Ca	Mg	Na		
Nutrients added								Environmental Loss	ses
Fertiliser, lime & other	304	135	231	161	20	41	0		
Rain/clover N fixation	2	0	3	5	2	5	30	To atmosphere	41
Irrigation	8	0	5	8	31	7	31	Volatilisation - fertiliser	25
Nutrients removed								Volatilisation - other	0
								Denitrification - background	16
As product	219	37	270	11	25	12	11	Volatilisation from urine	0
As supplements and crop	0	0	0	0	0	0	0	Denitrification from urine	0
residues								To water	15
To atmosphere	41	0	0	0	0	0	0	Leaching - urine patches	0
To water	15	0.2	17	165	40	8	28	Leaching - other	15
	\sim							Runoff	0
Change in block pools								Direct (animals, drains)	0
Standing plant material	0	0	0	0	0	0	0	Direct pond discharge	0
Root and stover residuals	30	7	26	0	2	1	0	Border dyke outwash	0
Organic pool	-23	-2	0	-2	0	0	0	Septic tank outflow	0
Inorganic mineral	0	13	-20	0	-1	-1	-2		
Inorganic plant available	32	81	-54	0	-13	34	24		

Crop 3 (Background only)

Models

Overseer™

X

APSIM Agricultural production system simulator

- It is used to model crop, pasture and tree systems.
- It has plant, soil and management modules.

The soil processes include: Water balance, N and P transformations, Soil pH, Erosion A full range of management controls.

- It simulates biological and physical processes in farming systems.
- The user specifies the management options
- It works on a daily time step and area basis

Validation of Overseer Cropping Model

History

- 2005 SFF project Nitrogen management for Environmental Accounting
- 2012 Version 6 Overseer released A new approach to modelling a rotation.
- 2013 FAR led the review of the cropping model in Overseer: - A set of recommendations around governance and validation were developed.

The Validation Project

- What needs to be done?
- Test Overseer against measured N leaching losses .
- Use existing datasets N leaching at 1.5m over a 12 month period.
- Use the associated agronomic data to generate Overseer N leaching predictions.

This is not a definitive test because Overseer generates a long term, average prediction of nutrient flows rather than a yearly prediction of N leaching in specific situations.

The Validation Project Approach

Existing crop and agronomic data and 12 month leaching data from arable and vegetable crops. Crop Loss # 1

Using the same crop and leaching data sets, generate leaching predictions for individual crops using APSIM.

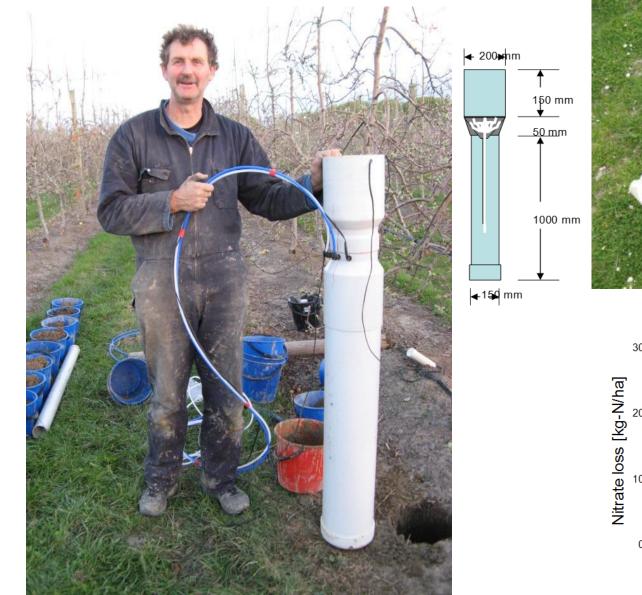
Crop Loss #2

If APSIM produces leaching loss numbers similar to the actual losses i.e. #1 = #2 **Run APSIM with the** same data set with 30 years of weather data. Average these to get a long-term average leaching loss. Crop Loss #4

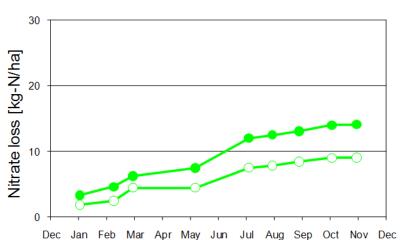
Use the same agronomic data in Overseer to predict a long term average leaching loss. Crop Loss #3

If all the Validation Numbers Match

Develop a range of cropping scenarios – different crop rotations, soils and locations


Use APSIM to run simulations over 30 years of differing weather data – long term average leaching loss.

Run the same scenarios through Overseer – long term average leaching loss.


Fluxmeters

FAR

---- Apple

---- Dwarf apple

Installation

12 fluxmeters/site Measuring; Soil water flow in mm/day and Leaching losses NH₄⁺ and NO₃⁻

Questions

