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1. Background 

 

Near infrared (NIR) spectroscopy is a technique that has been used to evaluate the quality of 

various agricultural and horticultural commodities (Williams et al., 2006; Jha, 2010). For the 

potato industry, one of the first applications of NIR was to measure moisture content of chips 

(McDermott, 1988; Shiroma and Rodriguez-Saona, 2009; Ni et al., 2011), with high correlation 

(r2 > 0.90) and low prediction errors (SEP < 0.30). Another application of NIR spectroscopy is the 

estimation of starch content and dry matter concentration (DMC) as these are directly related to 

the final quality of potato products and can influence the criteria for payments to farmers (López 

et al., 2013). The starch content and DMC were found to be predictable (r2 > 0.80) in previous 

literature (Dull et al., 1989; Hartmann and Büning-Pfaue, 1998; Scanlon et al., 1999; Haase, 2003, 

2006; Pedreschi et al., 2010). Peiris et al. (1999) found that the DMC was greater near the surface 

of the tuber and hence better correlation were found for the outside section of the tuber (Scanlon 

et al., 1997). Prediction of protein in various types of potato samples (Evans and Muir, 1999; 

Fernández-Ahumada et al., 2006) was less successful (r2 ≈ 0.60 – 0.80). In addition, sprouting 

capacity (Jeong et al., 2008) and fat content (Ni et al., 2011) were also estimated by NIR 

measurements. 

 

For processing potatoes such as crisps, low sugar content is required, as during frying sugars react 

with amino compounds which are also present in the tuber, contributing to dark colours in the final 

product and poor quality of processed potatoes (Roe et al., 1990). For instance, the Zebra chip 

disease caused by the potato-tomato psyllid, liberibacter-infective Bactericera cockerelli, has been 

found in many countries including New Zealand (Liefting et al., 2008). The symptoms of infected 

potato tubers have been shown to have elevated levels of reducing sugars (Gao et al., 2009) which 

lead to overall darkening observed in raw tubers and the dark strips found in fried products 

(Buchman et al., 2011). As a result, prediction of processing quality of potato mainly focuses on 

the ability to provide information on reducing sugars with respect to Maillard reaction. Analyses 

of these sugar precursors are often costly. There is a need for an inexpensive and yet rapid 

prediction tool for quality control purposes (Haase, 2011).  

 



 

 

Robust NIR calibration models to predict sugar content in potatoes have not been well established 

(López et al., 2013). Yet previous attempts to predict reducing sugars content in intact or processed 

tubers showed that rough estimation of these constituents was possible. Mehrübeoglu and Coté 

(1997) found that prediction of reducing sugars using NIR reflectance of intact tubers was possible 

for the cortical layer (R2 = 0.90) but not accurate enough for estimating processing quality due to 

the low concentrations of these sugars. Hartmann and Büning-Pfaue (1998) found good correlation 

between NIR spectral data and the amount of total reducing sugars (R2 = 0.82; % SEP = 0.06) and 

fructose (R2 = 0.89) in ground potato samples, and reasonable correlation for sucrose (R2 = 0.62) 

and glucose (R2 = 0.70). Haase (2011) predicted the quality of ground potato aliquots using NIR 

reflectance spectroscopy, and found that the best R2 for reducing sugars, sucrose and total sugar 

was 0.43, 0.71 and 0.66 respectively and the models were not good enough for screening purposes 

(SDR < 2.0). In a very recent study (published after our own experimental work), the detection of 

Zebra chip disease in ‘Atlantic’ potato tubers was found to be successful using NIR spectrometers 

in the range of 900 – 2500 nm (Liang et al., 2018), suggesting the potential of this technology to 

be applied in other potato cultivars. 

 

In summary, there is potential for applying NIR to predict sugar concentrations of processing 

potatoes. However, the accuracy needs to be improved in order to justify a wider applicability. It 

may be possible to utilize NIR to identify individual tubers or batches of tubers infected with Zebra 

chip disease through prediction of reducing sugars. This can be useful for segregation of batches 

or lines into quality classes in order to perform screening of potatoes for processing. In addition, 

constituents of potato are not evenly distributed within and between tubers and hence obtaining 

representative samples of intact tubers is important (Haase, 2011) for developing robust NIR 

calibration models. 

 

To test the industrial application of NIR, a proof of concept study was conducted. This study was 

proposed to develop a calibration model to qualitatively predict the incidence of Zebra chip disease 

in potato tubers. Industrial application of NIR requires segregation of diseased tubers prior to the 

peeling process, mainly because after peeling, tubers become wet and this wetness on the tuber 

surface could attenuate NIR signal and hence influence the intensity of light that reach the surface 



 

of tuber causing NIR sampling error. Demonstrating NIR to be successful in segregating diseased 

tubers prior to peeling process, would improve potato processing and minimize peeling efforts for 

diseased tubers. Ensuring efficient removal of diseased tubers would reduce processing losses and 

also provide a potential future opportunity to access export markets such as Japan for intact tubers. 

 

2. Objectives 

 

1. Understand the potato processing system and scope appropriate NIR application stages at 

a commercial potato processing facility.  

2. Collect NIR spectral data for both healthy and diseased tubers to develop a calibration 

model to segregate the two populations. 

3. Collect an independent data set and use for validating the model segregation performance. 

4. Make recommendations for industrial application of NIR to segregate potato tubers.    

 

3. Materials and Methods 

 

3.1 Calibration Data Collection 

 

For calibration, NIR spectral data for each of 300 diseased and healthy intact ‘Russet Burbank’ 

potato tubers were collected on 26-27th Oct, 2017 at Talley’s Group Limited, Ashburton, New 

Zealand. Samples collected from a batch which was harvested on 21-24th April, 2017 and stored 

at 8-12°C with 95% RH. Samples were collected at washing stage after removing the field dirt. 

For classification model development, each tuber was peeled from one side to visually confirm 

non-existence (healthy, Fig. 1a) and existence (diseased, Fig. 1b) of Zebra chip disease symptom 

of brown streaks. Upon correct visual categorisation of 300 tubers for each of the two categories, 

NIR spectral data of each tuber at 3 selected locations (around the equator at relatively flat 

surfaces) were collected for model calibration. The calibration data set was then used to develop a 

classification model to qualitatively segregate the tubers into two populations: healthy and 

diseased. 

 

 



 

 

 

Figure 1: Healthy (a) and diseased (b) ‘Russet Burbank’ potato tubers were visually assessed 

to confirm the correct categorisation. 

 

3.2 Validation Data Collection 

 

For validation, NIR spectral data for each of 200 diseased and healthy intact tubers were collected 

on 2nd and 3rd Nov, 2017 at Talley’s Group Limited, Ashburton, New Zealand. Samples were 

collected from the same batch as for calibration dataset. The developed model using calibration 

data set was then validated for prediction accuracy for different population of healthy and diseased 

tubers.  

 

3.3 Vis-NIR Spectral Data Collection  

 

A commercial full-range Vis-NIR spectroscopy system (FieldSpec® Pro, PANalytical., USA) was 

used for spectra collection. Within the instrument, three types of detectors are installed to cover 

both the visible and the NIR range of the spectrum including: a silicon detector (350 – 1000 nm); 

an InGaAs detector that measures shortwave infrared (1000 – 1800 nm); and a second InGaAs 

detector (1800 – 2500 nm). The optical fibre of the instrument was coupled with a contact probe 

(Hi-Brite, PANalytical B.V., Boulder, USA) for contact measurements with a spot size of 10 mm 

in diameter. The contact probe was fitted with a high intensity halogen lamp to produce consistent 

illumination in a broad electromagnetic spectrum. A diffuse reflectance material (Spectralon®, 

Labsphere Inc., North Sutton, USA) panel was used as a reflectance standard and to convert raw 

spectra to reflectance. 

(a) (b) 



 

 

4. Data Analysis 

 

4.1 Preprocessing of Vis-NIR Spectral Data 

 

The raw NIR spectral data were preprocessed in RStudio (R Foundation for Statistical Computing, 

Vienna, Austria). Spectral data were first truncated to 400 – 2450 nm (Fig. 2a) so that fluctuation 

and noise at both ends were eliminated. Reflectance was then converted to absorbance by a Log 

transformation (Fig. 2b) which can be related to concentration by Beer’s law. Second order 

derivation using a Savitzky-Golay smoothing algorithm was then applied (Fig. 2c). The purpose 

was to reveal the hidden information in the spectra as well as to reduce the noise in the data without 

reducing the number of variables. Lastly, normalisation and scaling transformation were applied 

(Fig. 2d) so that the final data were standardised and interpreted in terms of variation around the 

mean rather than the absolute values of the observations. 

 

4.2 Principal Component Analysis (PCA) 

 

The PCA plots project the main information carried by the spectra onto a smaller number of latent 

variables called principal components (PC). An important function of PCA plots is to help find 

patterns or groups in a set of sample populations. Samples with similar spectral characteristics 

form clusters, whereas samples that are different are far away from each other. For this purpose, 

wavebands for differentiating the spectral characteristics of the population were identified by all 5 

PCs (Fig. 3a). These include absorption bands for sucrose (e.g. at 990 nm), water (e.g. at 1450 nm) 

and starch (e.g. at 1200 and 1780 nm; Fig. 3b). Clusters of good and diseased tubers were 

visualised using PCs 3, 4 and 5 (Fig. 3c-d). This suggests that the information captured in the 

spectral data was able to detect the patterns causing the differences between diseased and good 

tubers, showing the potential to classify tubers based on spectral data.  

 



 

  

  

 

 

Fig. 2 Pre-processing of Vis-NIR spectral data: (a) reflectance; (b) absorbance; (c) second 

order derivation and (d) normalisation within the wavelength range of 400 – 2500 nm. 

(a) 

(b) 

(c) 

(d) 



 

 

 

 

 

 Fig. 3 Principal component (PC) analysis of pre-processed NIR spectral data identifying the 

cumulative percentage contributions of PCs towards explaining the variance for X-variable 

(wavebands) when different numbers of PCs are used (a) and important wavebands using 

loadings of x-variables (wavelengths) for all 5 PCs (b). PCs 3 & 4 (c) and PCs 4 & 5 (d) 

showing the segregation strength. 

 

 

 

(c) (d) 

(a) 

(b) 



 

4.3 Multivariate Data Analysis 

 

For calibration model development, the data set (collected on 26 – 27th Oct 2017) was randomly 

divided into two subsets; training (75%) and testing (25%) sets. A calibration model was first 

developed using the training data set in R-studio using support vector machines (SVM) 

classification. Internal L-fold (L = 20) cross validation was applied to avoid over-fitting. In this 

method, samples were divided into L segments. Each segment was removed from the data set and 

a calibration model was developed based on the remaining samples. The model was then used to 

predict the segment left out and estimated the prediction error. The process was repeated until 

every segment had been left out once, and then an average prediction error was estimated. Once 

the calibration model was developed, the robustness of the model was then validated using the test 

set collected on 2nd – 3rd Nov.  

 

To assess the model performance, the percentage of accurate classification was calculated for each 

group. Performance metrics was used to evaluate the four classifiers. True positive (TP) is referred 

to as correctly classified diseased tubers. True negative (TN) is the correctly classified good tubers. 

False positive (FP) is the number of classified diseased tubers which are actually good. False 

negative (FN) is the number of classified good tubers which are in fact diseased. Once the 

calibration model was developed it was then applied to the test data set collected during model 

validation trial. Class predictions provided by the model were compared to actual class labels in 

order to evaluate the robustness of the model. 

 

5.  Model Performance 

 

For the purpose of enabling export market of intact NZ potatoes by automatic grading to filter out 

Zebra chip diseased tubers, the important parameters are the TP rate (correctly classified diseased 

tubers) and FN rate (diseased tubers wrongly classified as good). Higher TP rate and lower FN 

rate would indicate that the model has a potential to enable online grading of tubers for the purpose 

of exporting intact tubers.  

 



 

The model developed using the calibration data set showed good predictive performance (Table 

1). The total accuracy was 93.3% considering both good and diseased classes. Both sensitivity and 

specificity were > 0.90, showing high predictive accuracy. The FN rate was very low (3%). This 

indicates that there were very few diseased tubers in the predicted good category. This would 

reduce the risks of having infected tubers in a good batch and hence contribute to commercial 

benefit if the predicted good class were to be exported to distant market.   

 

Table 1. Performance metrics used to evaluate performance of the calibration classification 

model. 

Parameter Definition Range Value 

Accuracy 
Percentage of correct predictions in the entire 

population 
0 – 100% 93.3% 

Kappa 

Indicates the reliability of a classifier on a specific 

dataset. The closer the value is to 1, the more reliable the 

classifying algorithm is 

0 – 1 0.87 

Sensitivity 
The ability of the classifier to correctly classify ‘good’ 

tubers 
0 – 1 0.90 

Specificity 
The ability of the classifier to correctly classify 

‘diseased’ tubers 
0 – 1 0.97 

False 

Negative 

The proportion of diseased tubers which are classified 

as good tubers. The FN value should be as low as 

possible  

0 – 100% 3% 

Area Under 

Curve 

A higher AUC value suggests better classification 

performance. An AUC value between 0.8 – 1.0 indicates 

good to excellent classification accuracy 

0 – 1 0.99 

 

In model validation, the classification model developed using calibration data set continued to 

show good reliability and high accuracy in the prediction of tuber classes (Table 2). The TP rate 

was 96% for diseased tubers, highly comparable to the 97% obtained in model calibration. The 

TN rate reduced from 89% in model calibration to 81% in model validation (Table 2). This would 

mean that approx. 19% of the good tubers would have been classified as diseased tubers. For online 



 

grading this would require a secondary (re)sorting of the predicted diseased tubers by peeling 

followed by visual observation, so that good tubers could be recycled from the designated diseased 

population. The results obtained in the current study are highly comparable to the recent study of 

Liang et al. (2018), where NIR was used to detect Zebra chip disease in intact ‘Atlantic’ tubers 

and achieved 97% accurate classification of diseased tuber in internal cross validation. It is 

important to note that, unlike Liang et al. (2018), external validation (use of independent validation 

data set) was performed in the current study and hence the reported predictive accuracy represents 

more realistic performance of the classification model for prediction of unknown samples. 

 

Table 2. Performance of model calibration and validation using TP (correctly classified diseased 

tubers), TN (correctly classified good tubers), FP (number of classified diseased tubers which 

are actually good) and FN (number of classified good tubers which are in fact diseased) rates. 

Confusion 

Matrix 

Predicted 

Calibration Validation 

Diseased 

(n = 299) 

Good 

(n = 300) 

Diseased 

(n = 200) 

Good 

(n = 200) 

Actual 

Diseased 97% 3% 96% 4% 

Good 11% 89% 19% 81% 

 

6. Conclusion and Recommendations  

 

Near Infrared (NIR) spectroscopy was tested to detect Zebra Chip disease in potato tubers. Results 

showed that in calibration data set 97% of diseased tubers were correctly categorised. The same 

results were observed when the model was applied on validation data set and 96% of diseased 

tubers were correctly identified. In both calibration and validation data set, only 3 and 4% 

(respectively) of diseased tubers were wrongly classified as good. Overall, this study demonstrates 

that NIR has potential to detect Zebra chip disease tubers in a commercial environment. However, 

in this study, samples (for both calibration and validation) were collected from the same batch and 

after storage of around 6 months. Incidence and expression of disease symptoms in freshly 



 

harvested tubers and at different stages of storage may or may not be varying. Therefore, for 

industrial implication, testing this model on freshly harvested tubers and at different stages of 

storage would be required to ensure the robustness in the model to segregate the diseased and good 

tubers throughout the processing season. Moreover, in this work a hand-held full-range Vis-NIR 

spectroscopy equipment was used for spectral data collection and still there is lot more to 

understand for industrial application of this technology in segregating diseased tubers. Handling, 

reduced data acquisition to enable cheap sensor deployment, potentially imaging systems, rapid 

data processing and segregation actuation will also be required to enable successful deployment 

of this technology in the industrial context. These challenges, although not small are all 

engineering challenges which should be able to be overcome in due course.  
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