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A Zebra Chip (ZC) disease detection system was developed based on hyperspectral imaging

(HSI) to minimise economic losses in the New Zealand potato chip industry. Current

detection methods for other than heavily diseased tubers require peeling or cutting of

potato tubers. A rapid and non-destructive grading method would be ideal to remove ZC

diseased potatoes at line before processing. The spectral signatures from a large population

(n ¼ 3352) of commercially sourced potatoes were collected using HSI in the spectral range

of 550 nme1700 nm. Spectral signatures of each potato (i.e. 1767 ZC infected and 1585

healthy potatoes) were extracted by segmentation and morphological operations. A cali-

bration dataset (80% of the total population was randomly selected), with and without pre-

processing, was used for modelling using the partial least squares discriminant analysis

(PLS-DA). The model performance shows 92% accuracy for ZC potato identification on

validation data (20% of total population). Waveband optimisation by variable importance in

projection (VIP) method revealed 34 wavebands sensitive to ZC diseased potatoes. This

optimum set of wavebands allowed ZC identification with 89% accuracy. The experiments

demonstrate the potential of HSI for identification of ZC infected potatoes in whole tuber

before processing. Efficient removal of diseased tubers would reduce processing losses and

provide a potential opportunity to access export markets for intact tubers.

© 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
(US English)which is sameaspotato crisp (UKEnglish)) industry

1. Introduction

The potato (Solanum tuberosum) industry contributes to theNew

Zealand economy an approximate one billion New Zealand

dollars annually (Anonymous, 2019). Potato is the largest vege-

table crop in New Zealand. The potato chip (note: Throughout

this paper, the terminology used is inUS English i.e. potato chip
nz (A.S. Garhwal).
.07.005
r Ltd. All rights reserved
is economically impacted by a disease named Zebra Chip (ZC).

The ZC disease is caused by the bacterium ’Candidatus Lib-

eribacter solanacearum (Lso) or Candidatus Liberibacter psy-

llaurous ’ and causes economic loss to the New Zealand

economy.Firstdiscovered inMexico in1994 ithasspread toNew

Zealand andmany other countries (Munyaneza, 2012). It causes

a decrease in crop yield because of quick death of the plant and/
.
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or impaired growth (Buchman, Fisher, Sengoda, & Munyaneza,

2012). Furthermore, ZC disease dramatically increases the

level of reducing sugars (glucose and fructose) in potatoes

(Kumar, Knowles, & Knowles, 2015). This results in dark brown

colour strips in potato chips during frying because of the

chemical reaction between reducing sugars and amino acids

known as the Maillard reaction (Dyer et al., 1991). Potato chips

with dark stripes are unacceptable to customers and conse-

quently cause significant economic loss to the potato chip in-

dustry. This has increased the requirement for a technique for

segregatingZCdiseasedpotatoes fromhealthyones.Traditional

destructive methods like manual inspection of cut potatoes for

disease detection have been widely used in the industry.

Standard lab-based methods are also available to detect ZC

infection in potatoes including polymerase chain reaction (PCR)

and LC-MS analysis for phenolic compounds (Levy, Ravindran,

Gross, Tamborindeguy, & Pierson, 2011; Navarre, Shakya,

Holden, & Crosslin, 2009) etc. Detection of certain phenolics by

LC-MS would provide greater confirmation but is not definitive

of ZC disease. Confirmation of the presence of DNA from the

infective agent by PCR is definitive. However, there is no stan-

dard approach based on non-invasive assessment.

Hyperspectral imaging (HSI) is a fast, non-destructive and

non-contact method that has been recognised for grading

food commodities (Feng & Sun, 2012). The biggest advantage

of HSI is that it captures both spatial and spectral information

simultaneously (Elmasry, Kamruzzaman, Sun, & Allen, 2012).

Physical properties like colour change of potato tubers during

processing (Amjad, Crichton, Munir, Hensel, & Sturm, 2018),

and textural attributes of potato tubers such as hardness,

cohesiveness, gumminess upon eating were predicted by

employing HSI (Su, Bakalis, & Sun, 2018). Other researchers

have attempted to estimate chemical constituents including

starch and cellulose (Su & Sun, 2017), and sugars such as

glucose, fructose and sucrose (Ayvaz, Santos, Moyseenko,

Kleinhenz, & Rodriguez-Saona, 2015) using HSI. Potatoes

with external defects such as mechanical damage, common

scab etc. (Riza, Suzuki, Ogawa, & Kondo, 2017) can be segre-

gated by using HSI. Furthermore, HSI has been used to identify

internal defects such as bruised tubers (L�opez-Maestresalas

et al., 2016), and hollow heart disease (Huang et al., 2015).

Zhao et al. (2018) concluded from their study that ZC infection

was not detected by infrared and near infrared spectra in pre-

storage and post-storage potatoes. It indicates that a model

fitted with reflectance measurements at four wave bands (i.e.

580, 582, 680 and 720-nm) showed a high level of accuracy for

classification of infected and uninfected tubers, when in-

fections occurred earlier in the season. However, 43% false

classification also occurred, which reflected the inaccuracy of

the model in classifying tubers infected later in the season.

Another study has been reported focussed on identifying ZC

disease in potatoes by using near infrared spectroscopy (NIRS)

(Liang et al., 2018). Garhwal et al. (2020) did some preliminary

spectral separation work for ZC potato identification and for

detecting tampered potatoes (mimicking ZC disease) by using

HSI (Garhwal, Pullanagari, Li, Archer, & Reis, 2019).

Our study investigates the use of HSI applied to detect ZC

disease in a large population of ‘Russet Burbank’ commercial

potatoes. ‘Russet Burbank’, is a popular and common potato

cultivar. It has few eyes and the skin colour is dark brown
(Bethke et al., 2014). It is used for potato chips, french fries,

baking and mashing (Schlosser, 2001) and is a widely grown

potato variety in the South Island of New Zealand. The ob-

jectives of this study were:

� To test the potential of HSI for segregating ZC infected

potatoes.

� To identify the most important spectral bands associ-

ated with ZC disease.

The novelty of this research lies within (1) analysing visible

region spectral data captured by HSI sensors to detect ZC

diseased potatoes that results in development of cheap

hyperspectral cameras for industrial scale ZC detection (2) the

use of a very big dataset of hyperspectral images of 3352 po-

tatoes for experimentation capturing the wide range of vari-

ability observed (3) includes hyperspectral images having

additional spatial information in visible and near infrared

(NIR) wavebands from 550 nm to 1700 nm for ZC detection (4)

estimation of variable importance in projection (VIP) scores

for selecting important wavebands for ZC identification in

potatoes. To the best of our knowledge these have not been

ventured for ZC potatoes grading.

2. Material and methods

2.1. Sample preparation

A total of 3352 ‘Russet Burbank’ commercially grown potato

tubers were harvested from the Canterbury region in the

South Island of New Zealand in April 2019, for inspection in

this research. To acquire an optimal number of diseased po-

tatoes, a highly ZC infected field area was identified by an

agronomist based on external symptoms of the plants. Tubers

were collected from the pre-selected farm and sent to a

commercial packhouse for washing and drying. These po-

tatoes were then transported to Massey University, Palmer-

ston North, New Zealand.

While the PCR is a standard method to detect ZC disease,

the application of this method for the number of tubers

investigated in this study was found to be prohibitive. Alter-

natively, we used a combination of approaches: 1) selected

tubers from harvest known to have a high likelihood of infec-

tion; 2) inspected each individual potato; and 3) confirmed the

likelihood of disease by frying a sample of potatoes.

Potatoes were peeled to identify signs for the ZC disease.

Visual inspection by cutting potatoes was performed to

identify ZC infection presence. Those displaying ZC disease

signs were assigned to the infected group. In addition to this

procedure, a subgroup of those classified as infected where

fried to confirm the validity of our approach. Since the visual

inspection method is subjected to bias, deep frying can sup-

port consistent performance in the validation.
2.2. Hyperspectral imaging set up

The HSI setup comprised a moving conveyor belt, two illumi-

nation sources, one VIS-NIR hyperspectral pushbroom camera

(Headwall Photonics, Massachusetts, USA) and a computer.

https://doi.org/10.1016/j.biosystemseng.2020.07.005
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The images were acquired using Hyperspec® III software

(Headwall Photonics, Massachusetts, USA). The conveyor belt

was driven at 32 mm s�1. Two illuminator reflectance lamps

(70 W, Malvern Panalytical Ltd, Malvern,UK), set at an angle of

45�, were employed to illuminate the moving tubers. The

reference tile used (Zenith Polymer® Diffusers, SpherOptics

GmbH, Germany) was stationed at the middle of the camera

focus where the intensity of light approximated 85% of satu-

ration level (11,000 au (arbitrary unit meaning no unit)). The

system captures 235 wavebands in the spectral range from

550 nm to 1701 nm with a spectral resolution of 5 nm.

Batches of eight washed and dried potatoes with their

respective labels were arranged on rectangular black trays for

hyperspectral image collection. These trays were placed on

the conveyor to pass under the camera. As shown in Fig. 1, the

workflow includes four steps to identify ZC diseased potatoes

using HSI. These four steps are:

Step 1. Hyperspectral Image acquisition: - A total of 419 hyper-

spectral images were collected using HSI system. Each

hyperspectral image contained eight potatoes, a random mix

of healthy and diseased.

Step 2. Visual assessment of potatoes: - Even mildly infected ZC

potato had prominent tiny brown dots easily visible to the

naked eye. Additional verification was performed by frying

slices from a randomly selected subset of potatoes. This

confirmed that potatoes judged not infected by manual in-

spectionwere not subsequently revealed to be infected via the

characteristic zebra stripe discolouration induced by frying.

Immediately after the hyperspectral imageswere collected,

the potatoeswere peeled by trained staff to identify symptoms

of ZC disease. If symptoms of ZC were found, the tuber was

labelled as “diseased” otherwise as “healthy”. From this visual

inspection, 1767 potatoes tubers were assessed as diseased,

and the remaining 1585 tubers as healthy. Out of 3352 potato

tubers, 364 tuberswere fried tovalidate theZCdisease severity.

In this case, tubers were sliced into 5e10 mm thick slices and

deep fried in canola oil for 2 min at a temperature of 100 �C.

Step 3. Image processing: - Collected hyperspectral images

underwent a series of image processing steps to extract

spectral signatures of individual potatoes as shown in Fig. 1.

Step 4. Spectral Analysis: - Extracted spectral data underwent a

sequence of pre-process steps before development of a clas-

sification model. Waveband selection was then performed to

obtain an optimum model.

2.3. Image processing

Image processing was the third step for ZC detection system as

shown in Fig. 1. The total processing time for image processing

was27.11 s i.e. 1.4 s for calibration, 1.13s for segmentation, 1.58 s

for individual potato extraction and 23 s for region of interest

extraction. That is not fast enough for commercial grading of

potatoes and potentially affected the final throughput. Our aim

is to provide a proof of concept for potato ZC detection by

hyperspectral imaging.Todecrease theimageprocessingtime is

out of the scope of the paper that can be mitigated to meet
industrial processing speed, by using parallel processing soft-

ware and a dedicated hardware such as FPGA.

Image calibration was performed with a dark reference (D)

collected with the lens of the camera covered to detect any

effect of dark current on the camera sensor and a white

reference (W) collected from a standard white plate (Zenith

Polymer® Diffusers, SpherOptics GmbH, Germany). Raw in-

tensity values of hyperspectral images were converted to

reflectance values using the following Eq. (1):

R¼ ITuber sample � ID
IW � ID

(1)

where, ID corresponds to the intensity value for the dark

reference, IW is the intensity value captured on the white

reference tile, ITuber sample represents the intensity value of the

tuber sample and R is the absolute reflectance.

2.3.1. Segmentation
An in house customised code was developed in Python for

automaticmorphological operations following thresholding for

segmentation. In the first part of segmentation the background

from hyperspectral images was removed using a threshold

value of 0.4 at 671 nm. In the second stage, unwanted back-

ground strips were removed using a threshold value of 0.7 at

558 nm, and the third threshold value of 0.6 employed at

1396 nm to remove the labels from the image. Following this

process, morphological operations including erosion, dilation,

opening and closingof an imagewereperformed to remove left-

over spatial noise in the image to obtain the final segmented

image separating tubers from the background.

2.3.2. Individual tuber extraction
Due to variability in the size and shape of tubers there was

variability in the borders of the images due to variation in the

illumination in these regions. To reduce this negative effect,

preliminary analysis investigated the sizes of region of inter-

est (ROI) and found that 20 � 20 ROI at the centre provided

consistent information across the samples. The size of one

pixel was 0.52 mm by 0.52 mm for each captured tuber image

by HSI. The dimensions of the ROI used for spectral extraction

was a 20 by 20 square. The actual physical size of the ROI was

obtained by multiplying size of one pixel to the dimension of

ROI ((20 � .52 mm) � (20 � .52 mm)) which result in

108.16mm2. Considering, these facts a 20� 20 ROI was used to

extract information from centroid of each potato to calculate a

mean spectrum for the same tuber.

2.4. Multivariate data analysis

The last and fourth step for ZC detection system is named as

spectral analysis in Fig. 1. The spectral data from hyper-

spectral images were processed and analysed using multi-

variate statistical methods in Spyder (The Scientific Python

Development Environment, MIT, Cambridge, Massachusetts,

USA) and RStudio (Version 1.1.463, Boston, MA, USA).

In this study we assume that the effect of ZC infection

could affect reflectance by changes in absorption and scat-

tering properties of the potatoes. Thus, we have considered

both reflectance and absorbance when investigating the best

pre-processing method.

https://doi.org/10.1016/j.biosystemseng.2020.07.005
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Fig. 1 e Flowchart for potato ZC disease identification using hyperspectral imaging.
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Reflectance values were restricted to the spectral range

between 600 nm and 1650 nm by removing 10 wavebands

from both ends (i.e. from 550 nm to 595 nm, and

1655 nme1700 nm) due to low signal to noise ratio in those

extreme regions. Log transformation (LT) was performed on
the reflectance spectra to convert them into absorbance

values. Then standard normal variate method (SNV) was

applied to reduce the effect of light scattering on log trans-

formed data (Rinnan, Berg, & Engelsen, 2009). Derivative

transformation with a window size of 11, polynomial order of

https://doi.org/10.1016/j.biosystemseng.2020.07.005
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3 and a first or second derivative, was applied to the SNV

spectral data (Savitzky& Golay, 1964). This operation removes

the baseline offsets (Burger & Geladi, 2007). Different combi-

nations of these pre-processing methods were evaluated for

selection of the best for optimal model development.

Partial least squares discriminant analysis (PLS-DA) was

used to develop models for segregating diseased and healthy

tubers (Want&Masson,2011). PLS-DAwasperformedbyfinding

a link between two matrices X (containing the spectra) and Y

(representing theclassesofdiseasedandhealthy).PLSgenerates

orthogonal linear combinations of original spectra that contain

maximum covariance between X and Y variables known as

Latent Variables (LVs) (H€oskuldsson, 1988; Wold, Sj€ostr€om, &

Eriksson, 2001). Each column of the matrix Y represented one

class (i.e. one column for diseased and another column for

healthy class). Once the model was developed and applied to a

new spectrum it generated one prediction for each class. These

predictionswere then compared to thresholds identified during

development of themodel and provided discrimination among

classes to identify which class the new spectrumwas allocated

to (Brereton & Lloyd, 2014).

2.4.1. Waveband selection using Variable Importance in
Projection (VIP) scores of PLS-DA
Variable importance in projection (VIP) was used to identify

the most important wavebands for the classification of tubers

(Wold, Sj€ostr€om, & Eriksson, 1998) (L. Eriksson, Johansson,

Kettaneh-Wold, & Wold, 2001). Wavebands having VIP score

values greater than one are considered as very important

variables in classification (Mehmood, Martens, Sæbø,

Warringer, & Snipen, 2011). The same strategy was used for

selecting significant wavebands. A PLS-DA model’s perfor-

mance was evaluated on these selected wavebands, for

identification of ZC infected potatoes.

Spectral data processed with different combinations of

wavebands and models were developed for wavebands se-

lection based on VIP scores.

(i) Three sets of wavebands were selected based on

three models developed with the 235 wavebands as

follows: -
a. Without pre-processing spectral data of 235

wavebands

b. With pre-processing of spectral data with LT, SNV

and first derivative transform (FDT).

c. With pre-processing of spectral data with LT, SNV

and second derivative transform (SDT).
(ii) Another three sets of wavebands were selected on

the basis of models developed with the reduced 215

wavebands spectral data as follows: -
a. Without pre-processed spectral data of 215

wavebands

b. With pre-processing of spectral data with LT, SNV

and FDT.

c. With pre-processing of spectral data with LT, SNV

and SDT.
(iii) Commonwaveband selection: From the above six sets

of selected wavebands, common wavebands were

selected that fell in at least four sets of selected

wavebands.
(iv) Below 1000 nm: Wavebands were selected for the

range below 1000 nm to test the applicability of low-

cost hyperspectral cameras such as the Specim FX 10

(Specim, Finland), which are readily available and

may be suited to the industrial environment, but are

limited wavebands between 400 and 1000 nm.

2.5. Model validation

The total set of tuber samples was divided randomly into

training (80%) and test sets (20%) for supervised classification

(PLS-DA). A training dataset was used for model development.

The model performance was evaluated on the test data set to

measure the capability of identification of ZC infected potatoes.

The number of latent variables for PLS-DAmodels was selected

using four-fold cross validation (Westerhuis et al., 2008).

The metrics used for measuring the developed model ef-

ficiency were accuracy, sensitivity and specificity (Parikh,

Mathai, Parikh, Chandra Sekhar, & Thomas, 2008).

2.5.1. Accuracy
It determines the difference between true and calculated

values. The proportion of potato samples classified correctly

was determined by accuracy.

2.5.2. Sensitivity
Binary classification performance was estimated by sensitivity.

It is expressed as the fraction of the actual positives that are

correctly identified (total positive classified/total actual positive

in the population). In this paper, binary classification was

determined in terms of diseased (positive) and healthy (nega-

tive) potatoes. Our aimwas to identify diseased potatoes from a

group of potatoes. Hence, sensitivity measures the part of

diseased potato samples correctly classified as diseased

potatoes.

2.5.3. Specificity
Another measurement for binary classification performance

was the fraction of negatives identified (total negatives clas-

sified/total actual negative in the population). The aim of the

specificity in this paper was to tell the fraction of healthy

potato samples correctly classified as healthy potatoes.

The values of sensitivity and specificity lie in between

0 and 1. Sensitivity and specificity values nearer to 1 indicate

good performance of model.

3. Results and discussions

3.1. Mean raw and second derivative spectra

The mean spectra of 3352 (1589 healthy and 1763 diseased)

potatoes were obtained and plotted (Fig. 2(a)) to inspect any

probable variation among healthy and ZC infected potatoes.

Additionally, analysis was performed to detect difference be-

tween processed spectral data (Fig. 2(b)) and raw spectral data

(Fig. 2(a)) of healthy and ZC infected potatoes.

The average spectrum of each group (1589 healthy and

1763 diseased) was obtained and are presented in Fig. 2(a). The

solid line shows the average spectrum corresponding to

diseased potato and the dotted line corresponds to healthy

https://doi.org/10.1016/j.biosystemseng.2020.07.005
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Fig. 2 e Mean Spectra of 1763 diseased (solid line) and 1589 healthy tubers (dotted line) (a) Raw Mean Spectra (b) Second

derivative of Raw Mean Spectra.
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potato spectra. From Fig. 2(a) most of the raw spectra of

healthy and diseased potatoes overlap except for the wave-

bands between 550 nm and 850 nm, 1150 nm and 1300 nm;

1550 nm and 1650 nm. Second derivative was applied to these

spectra to reduce effect of light scattering (by eliminating

linear baseline shifts) and to enhance the effect of spectral

bands originally observed as shoulders in the reflectance

spectra. The difference in spectra from 550 nm to 850 nm re-

mains after applying second derivative. The difference in

spectra for the other spectral regions vanishes after taking the

second derivative as shown in Fig. 2(b) suggesting that dif-

ference observed Fig. 2(a) could be associated with difference

in scattering properties between the two groups.

3.2. Deep frying validation

Figure 3 illustrates different levels of infection. The highest

level of ZC infection is represented by Fig. 3(a), where dark

brown strips due to phenolic oxidation and excessive Maillard

browning can be seen all over the slice. Figure 3(b) has a mild

level of infectionwhich is verified by the dark brown pigments

only at the corner of the slice. This dark brown colouring

makes chips highly unacceptable to consumers. Figure 3(c)

represents a healthy potato slice with no browning at all.

The results show that all samples classified as infected and

fried displayed the signs of the disease thus validating the pro-

cedure. Several levels of infection (Fig. 3) were observed from

low to high and duringmodel testing all diseasedwere labelled.
Fig. 3 e Slices with and without ZC disease (a) for severely dise

tuber.
Deep frying provided additional validation of the manual iden-

tification of diseased potatoes, but no attempt was made to

measure the infection severity. To study the different level of

infections (severity) is out of the scope of this paper.

3.3. Model performance

A series of spectral pre-processing combinations were evalu-

ated (data not shown) and the best combination was utilised

for spectral data analysis.

The best combination found first used log transformation

(LT)of reflectance.After thatStandardNormalVariate (SNV)and

then second derivative (SDT) or first derivative (FDT) and mean

centring (MC) were effective. This pre-processing combination

was performed uniformly and in the same sequence each time.

Extracted spectral data with 235 wavebands were utilised

to develop three PLS-DA models. The spectral data were pre-

processed with LTþSNVþSDTþMC and LTþSNVþFDTþ MC

respectively. Eleven latent variables were selected based on

cross validation to develop the final PLS-DA model having

cumulative explained variance of 99.98%. Maximum accuracy

was achieved by using LTþSNVþSDTþMC pre-processed

spectral data i.e. around 91% with highest specificity (91%)

and sensitivity (91%) during calibration.

The results for the test dataset, Table 1, show that without

any pre-processing of spectral data, 87% accuracy was

observed, and it was increased between 3% and 5% after pre-

processing. Also, when the combination of pre-processing
ased tuber (b) for mildly diseased tuber and (c) for healthy

https://doi.org/10.1016/j.biosystemseng.2020.07.005
https://doi.org/10.1016/j.biosystemseng.2020.07.005


Table 1 e Model performance comparison in ZC diseased potato identification using different pre-processing technique
combinations with different number of wavebands.

Pre-Processing Number of Wavebands PLS-DA on Full Spectrum with 11 latent components

Cross Validated Calibration Test

A Sen Spe A Sen Spe

No Pre-processing 235 89 89 89 87 87 87

LTþSNVþFDTþMC 235 90 90 90 90 90 90

LTþSNVþSDT þMC 235 91 91 91 92 92 92

A: Accuracy, Sen: Sensitivity, Spe: Specificity, FDT: Savitzky Golay with first derivative, SDT: Savitzky Golay with second derivative, SNV: for

standard normal variate, LT: Log Transformation, the numbers are % values.

b i o s y s t em s e n g i n e e r i n g 1 9 7 ( 2 0 2 0 ) 3 0 6e3 1 7312
LTþSNVþSDTþMC was used the maximum accuracy of 92%

was obtained for the test dataset, and highest specificity and

sensitivity of 92% (Table 1).

Furthermore, no considerable difference was observed in

accuracy, sensitivity and specificity after keeping the same

pre-processing except using first derivative rather than sec-

ond derivative. A similar procedure was performed after

removing the first and last 10 wavebands from the 235

wavebands i.e. 215 wavebands were used to develop three

more PLS-DA models. The results were similar to the results

obtained with 235 wavebands, so these results are not re-

ported in this paper (See Appendix A: Tables 4 and 5 and

represented in Appendix Table 4).

3.4. Selecting important bands for discriminating
potatoes

VIP scores indicate the importance of each waveband in

differentiating healthy and diseased tubers.

Three different sets of wavebands were selected based on

VIP score value equal to or exceeding one. These sets of

wavebands were extracted from three PLS-DA models devel-

oped above using the spectral data of all 235 wavebands. A

model developed using no pre-processed spectral data had 46

wavebandswith VIP scores values greater than or equal to one

(Fig. 4). Similarly, the models developed by using pre-

processed spectral data with LTþSNVþSDTþ MC and

LTþSNVþFDTþ MC had 77 and 72 wavebands, respectively.

The classification performances of selected wavebands

was checked by developing another three calibration models

using PLS-DA with and without pre-processing the spectral

data. Only best results were reported in Table 2, i.e. 46 wave-

bands achieve 91% classification accuracy with no pre-

processing of spectral data. Similarly, the best results were

reported in the case of 77 and 72 selected wavebands.

The same model development and waveband selection

processwasperformed on the truncated 215waveband spectral

data. Thenumberofwavebandsselectedwere47, 61and59.The

results for ZC potatoes identification were similar to the results

of 235 wavebands selected wavebands spectral data, so these

results are not reported in this paper (See Appendix A: Table 5)

and revealed in Appendix Table 5.

For further optimisation common wavebands were selected

from235wavebands spectral data (i.e. 46, 77 and 72wavebands)

and 215 wavebands spectral data (47, 61 and 59 wavebands).

That resulted in 40 common wavebands of which 25 lie in the

visible region and 15 in the near infrared region (NIR). Different

combinationsof spectraldatapre-processingwereemployedon
these 40 waveband subsets of spectral data for model develop-

ment and only the best results were reported. PLS-DA models

were developed and tested on ZC potato identification. The ac-

curacy for identification of ZCdiseased potatoeswas 89% (Table

3), similar to the accuracy of the earliermodelwith 46, 77 and 72

wavebandsubsetsofspectraldata. Itappears that40wavebands

were sufficient to identify the ZC defected potatoes without

compromising accuracy.

A final selection was performed by choosing spectral data

from 40 wavebands by removing 6 selected wavebands above

1000 nm i.e. 1346 nm, 1351 nm, 1356 nm, 1371 nm, 1376 nm,

1381 nm to test the potential suitability of less capable and

less expensive hyperspectral cameras. That gave 34 wave-

bands below 1000 nm where 25 lie in the visible region (i.e.

607 nm, 611mn, 616 nm, 626 nm, 636 nm, 652 nm, and from

661 nm to 750 nm with a spectral resolution of 5 nm) and

remaining 9 lie in the NIR region (i.e. 755 nm, 760 nm, 765 nm,

770 nm, 775 nm, 805 nm, 810 nm, 815 nm, 883 nm). PLS-DA

applied to spectral data of the 34 wavebands gave a model of

almost similar accuracy to the full 40 wavebands (Table 3).

The above analysis represents that brown colour of the ZC

infection areas/dots is one of the most important factor in

identifying the ZC infected potatoes. This is because of the fact

of polyphenolic oxidation results in decolouration of healthy

potato tissues developing brown spots/areas.

These results indicated that the 34 wavebands were the

main contributor in discrimination between healthy and

infected potatoes (Fig. 5).

3.5. Evaluating the ZC disease detection system

The results from this study show that HSI has potential to

discriminate ZC disease infected potatoes from healthy.

Chemical changes in ZC diseased potatoes appear to have

resulted in noticeable differences in reflectance values in the

visible (550 nme750 nm) and near infrared regions

(750 nme1400 nm) (Fig. 5). These spectral ranges have also

shown to be related to browning in bruised potatoes (Ye, Sun,

Tan, Che, & Yang, 2018). This could lead to confounding ef-

fects between browning and ZC disease. This could result in

bruised potatoes being rejected as diseased potatoes, which is

not a problem as bruising is also classified as a quality defect.

Liang et al. (2018) investigated the use of NIRS for non-

destructive detection of ZC diseased potatoes. In their study

the spectral range utilised was between 900 nm and 2600 nm

and it was reported an accuracy of 97%, which 5%e7% higher

than current study. The difference in performance could be

associated with size of the population investigated, where

https://doi.org/10.1016/j.biosystemseng.2020.07.005
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Fig. 4 e VIP Scores of PLS-DA model developed with and without pre-processing of spectral data (a) 235 wavebands without

pre-processing (b) 235 wavebands with first derivative(c) 235 wavebands with second derivative (d) 215 wavebands without

pre-processing (e) 215 wavebands with first derivative (f) 215 wavebands with second derivative.

Table 2 e Model performance comparison in ZC diseased potato identification using selected wavebands.

Pre-Processing Number of Wavebands PLS-DA on selected wavebands with 11 latent components

Cross Validated Calibration Test

A Sen Spe A Sen Spe

LT 46 90 90 90 91 91 91

LT 77 89 89 89 89 89 89

LT 72 89 89 89 90 90 90

A: Accuracy, Sen: Sensitivity, Spe: Specificity, LT: Log Transformation, the numbers are % values.

Table 3 e Model performance comparison in ZC diseased potato identification using optimised wavebands.

Pre-Processing Number of Wavebands PLS-DA on Full Spectrum with 11 latent components

Cross Validated Calibration Test

A Sen Spe A Sen Spe

LT 40 89 89 89 89 89 89

LT 34 89 88 88 88 88 88

A: Accuracy, Sen: Sensitivity, Spe: Specificity, LT: Log Transformation, the numbers are % values.

b i o s y s t em s e ng i n e e r i n g 1 9 7 ( 2 0 2 0 ) 3 0 6e3 1 7 313
Liang et al. (2018) used 363 tubers (175 infected and 188 non-

infected) in comparison with the current study, which uti-

lised 3352 (1589 Healthy and 1763 diseased). The difference in

performance could also be associated to the validation

approach, where Liang et al. reports the accuracy based on

cross validation results while the current study is based on

validation data set (30% of that was not used in the develop-

ment of the calibration). Results of Liang et al. shows impor-

tant wavebands lies in between 1250 and 1350 nm, around

1400 nm, around 1700 nm, 1800e1870 and 2050e2150 nmwith

the greatest contribution with the band between 1800 nm and
1870 nm. The current study identified 25 important wave-

bands in the visible region whereas 6 in between 607 and

652 nm, and 19 wavebands from 661 nm to 750 nm) and 15 in

the NIR region i.e. 5 in between 755 nm and 775 nm, 4 in be-

tween 805 and 883 nm and 6 wavebands in between 1346 nm

and 1381 nm. The highest contribution was observed for

visible region wavebands. Altogether the current study and

Liang et al. (2018) demonstrate the value of VIS-NIR for

detection of ZC diseased potatoes.

Most of the important wavebands for ZC identification

were found in the visible region ranging from 600 nm to

https://doi.org/10.1016/j.biosystemseng.2020.07.005
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Fig. 5 e Important wavebands for identification of ZC.
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750 nm (i.e. 24 wavebands) (Fig. 5). This region is attributed to

colour changes caused by phenolic oxidation (Xing, Bravo,

Moshou, Ramon, & De Baerdemaeker, 2006). Usually, the ZC

disease causes brown dots that can have strong absorption

characteristics in the visible region (Ye et al., 2018). The

wavebands from 750 nm to 885 nm represent the third over-

tone of NeH and CeH vibrations that could be associated with

phenolic compounds (Porteous, Muir, & Wastie, 1981).

The bacterium ’Candidatus Liberibacter solanacearum’ de-

creases specific gravity by reducing the amount of water in tu-

bers (AUSVEG, 2017). As ZC infection increases, we can expect

higher reflectance values in the water absorption region (be-

tween 1350 nm and 1400 nm) of the spectrum. The other seven

wavebands are between 1300 nm and 1400 nm (Fig. 5), which

includes the starch relevant wavebands at 1380 nm, and may

reflect changes in starch composition due to ZC infection.

Selecting the optimal number of wavebands (34 wave-

bands) that are sensitive to ZC disease could improve acqui-

sition speed and reduce computational time without

compromising the performance of the predictions.

The highest accuracy for ZC infected tubers detection

observed in this study is 92%. The fact that we scanned po-

tatoes only from one side and ZC infection might be possible

on the other side of potato may contribute to inaccuracy. This

can be mitigated by taking multiple images of the same tuber

while rotating on the moving conveyor belt.

This research proved that HSI has potential for rapid and

non-destructive identification of Zebra disease in potatoes. As

we used a wide range potatoes in the model development, the

model is simplified and can be deployable in an industrial

environment for automatic screening. However, real-time

processing tools are required to process the data.

As this research has been conducted on specific variety of

potato, further research is required to test the performance of

model on different varieties fromwider potato growing regions.

This work is based on the assumption that visual inspec-

tion of peeled potatoes enabled identification of signs of the

ZC infected potatoes. This allowed to use a large population of

samples for the study. A subset of the potatoes identified as

diseased was fried and confirmed that our approach for visual

assessment of ZC signs was robust. A limitation of our
approach is the possibility of having infected potatoes that did

not show visual signs of the disease, and therefore were

assigned to the healthy potatoes group. However, our results

show similar sensitivity and specificity and therefore similar

classification performance for both groups. Considering that

two groups are well balanced in the number of samples, this

suggests that the likelihood of having incorrectly assigned

potatoes to the heathy groups is low.

4. Conclusions

A ZC disease detection system based on HSI was proposed.

The potential of HSI was evident in this study for rapid iden-

tification of ZC diseased potato tubers in a non-destructive

manner. PLS-DA was useful in modelling full spectral data

(i.e. 235 wavebands) and truncated spectra (i.e. 215 wave-

bands) with (first and second derivative) and without pre-

processing. The 92% detection accuracy for ZC diseased po-

tatoes confirmed the capability of HSI. Important wavebands

were successfully selected based on VIP scores of PLS-DA

models. ZC detection accuracy of 90% and 89% were ach-

ieved using 40 and 34 selected wavebands respectively.

This study shows that diffuse reflectance measure with

external illumination and with the line scanning detection

successfully discriminated healthy and diseased potatoes.

Even better performance should be possible by making better

use of spatial data which might better recognise uneven ZC

distribution especially in lightly infected tubers. This

approach allows that further enhancement is achieved with

deep learning (such as 3D CNN) based methods to take in

consideration the spatial distribution within the scanned po-

tato, which is focus of future research. Overall, this research

demonstrates the potential of HSI as a fast ZC detection tool

for whole washed tubers in the potato chip industry.
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Pre-Processing Number of Wavebands
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Table 5 e Model performance comparison in ZC diseased pota
combinations with different number of wavebands.

Pre-Processing Number of Wavebands P

Trimmed spectral data i.e. 215 wavebands

LT 215 90

LTþSNVþFDTþMC 215 90

LTþSNVþSDTþMC 215 91

Selected wavebands based on VIP scores of PLS-DA model without pre-p

LT 47 89
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From the above six sets of selected wavebands, common wavebands wer

LT 40 89
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From above 40 wavebands, 34 wavebands selected that fall below 100 nm

LT 34 89

LTþSNVþFDTþMC 34 86

LTþSNVþSDTþMC 34 87

A: Accuracy, Sen: Sensitivity, Spe: Specificity, FDT: Savitzky Golay with fi

standard normal variate), the numbers are % values.
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PLS-DA on Full Spectrum with 11 latent components

s Validated Calibration Test
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to identification using different pre-processing technique
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